Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes.

نویسندگان

  • Kamal K Saha
  • Branislav K Nikolić
  • Vincent Meunier
  • Wenchang Lu
  • J Bernholc
چکیده

We study molecular transistors where graphene nanoribbons act as three metallic electrodes connected to a ring-shaped 18-annulene molecule. Using the nonequilibrium Green function formalism combined with density functional theory, recently extended to multiterminal devices, we show that these nanostructures exhibit exponentially small transmission when the source and drain electrodes are attached in a configuration with destructive interference of electron paths around the ring. The third electrode, functioning either as an attached infinite-impedance voltage probe or as an "air-bridge" top gate covering half of molecular ring, introduces dephasing that brings the transistor into the "on" state with its transmission in the latter case approaching the maximum limit for a single conducting channel device. The current through the latter device can also be controlled in the far-from-equilibrium regime by applying a gate voltage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT

Quantum transport properties of pure and functioned infinite lead-connection region-lead systembased on the zigzag graphene nanoribbon (2-zGNR) have been investigated. In this work the effectof the doping functionalization on the quantum transport of the 2-zGNR has been computationallystudied. Also, the effect of the imposed gate voltages (-3.0, 0.0 and +3.0 V) and bias voltages 0.0 to2.0 V hav...

متن کامل

Conduction coefficient modeling in bilayer graphene based on schottky transistors

Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...

متن کامل

Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon

Articles you may be interested in Quantum conductance of zigzag graphene oxide nanoribbons Chiral graphene nanoribbons: Objective molecular dynamics simulations and phase-transition modeling Phonon limited transport in graphene nanoribbon field effect transistors using full three dimensional quantum mechanical simulation

متن کامل

Quantum transport of Au-S-S-Au nanoscale junctions

Related Articles Room-temperature single molecular memory Appl. Phys. Lett. 100, 053101 (2012) Coherently controlled molecular junctions J. Chem. Phys. 136, 044107 (2012) Efficiency improvement in fullerene-layer-inserted organic bulk-heterojunction solar cells J. Appl. Phys. 111, 023104 (2012) Probing transconductance spatial variations in graphene nanoribbon field-effect transistors using sca...

متن کامل

High-Speed Ternary Half adder based on GNRFET

Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 105 23  شماره 

صفحات  -

تاریخ انتشار 2010